翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

road traffic safety : ウィキペディア英語版
road traffic safety

Road traffic safety refers to methods and measures for reducing the risk of a person using the road network for being killed or seriously injured. The users of a road include pedestrians, cyclists, motorists, their passengers, and passengers of on-road public transport, mainly buses and trams. Best-practice road safety strategies focus upon the prevention of serious injury and death crashes in spite of human fallibility (which is contrasted with the old road safety paradigm of simply reducing crashes assuming road user compliance with traffic regulations). Safe road design is now about providing a road environment which ensures vehicle speeds will be within the human tolerances for serious injury and death wherever conflict points exist.
As sustainable solutions for all classes of road have not been identified, particularly lowly trafficked rural and remote roads, a hierarchy of control should be applied, similar to best practice Occupational Safety and Health. At the highest level is sustainable prevention of serious injury and death crashes, with sustainable requiring all key result areas to be considered. At the second level is real time risk reduction, which involves providing users at severe risk with a specific warning to enable them to take mitigating action. The third level is about reducing the crash risk which involves applying the road design standards and guidelines (such as from AASHTO), improving driver behaviour and enforcement.〔Towards Zero Framework〕
==Background==

Road traffic crashes are one of the world’s largest public health and injury prevention problems. The problem is all the more acute because the victims are overwhelmingly healthy before their crashes. According to the World Health Organization (WHO), more than 1 million people are killed on the world’s roads each year.〔(Statistical Annex ), World report on road traffic injury prevention〕 A report published by the WHO in 2004 estimated that some 1.2 million people were killed and 50 million injured in traffic collisions on the roads around the world each year〔(【引用サイトリンク】title=World report on road traffic injury prevention )〕 and was the leading cause of death among children 10–19 years of age. The report also noted that the problem was most severe in developing countries and that simple prevention measures could halve the number of deaths.
The standard measures used in assessing road safety interventions are fatalities and killed or seriously injured (KSI) rates, usually per billion (109) passenger kilometres. Countries caught in the old road safety paradigm,〔KSI league tables〕 replace KSI rates with crash rates — for example, crashes per million vehicle miles.
Vehicle speed within the human tolerances for serious injury and death is a key goal of modern road design because impact speed affects the severity of injury to both occupants and pedestrians. For occupants, Joksch (1993) found the probability of death for drivers in multi-vehicle accidents increased as the fourth power of impact speed (often referred to by the mathematical term δv ("delta V"), meaning change in velocity). Injuries are caused by sudden, severe acceleration (or deceleration); this is difficult to measure. However, crash reconstruction techniques can estimate vehicle speeds before a crash. Therefore, the change in speed is used as a surrogate for acceleration. This enabled the Swedish Road Administration to identify the KSI risk curves using actual crash reconstruction data which led to the human tolerances for serious injury and death referenced above.
Interventions are generally much easier to identify in the modern road safety paradigm, whose focus is on the human tolerances for serious injury and death. For example, the elimination of head-on KSI crashes simply required the installation of an appropriate median crash barrier. For example, roundabouts, with speed reducing approaches, encounter very few KSI crashes.
The old road safety paradigm of purely crash risk is a far more complex matter. Contributing factors to highway crashes may be related to the driver (such as driver error, illness or fatigue), the vehicle (brake, steering, or throttle failures) or the road itself (lack of sight distance, poor roadside clear zones, etc.). Interventions may seek to reduce or compensate for these factors, or reduce the severity of crashes. A comprehensive outline of interventions areas can be seen in management systems for road safety.
In addition to management systems, which apply predominantly to networks in built-up areas, another class of interventions relates to the design of roadway networks for new districts. Such interventions explore the configurations of a network that will inherently reduce the probability of collisions.
Interventions for the prevention of road traffic injuries are often evaluated; the Cochrane Library has published a wide variety of reviews of interventions for the prevention of road traffic injuries.〔(【引用サイトリンク】title=Speed Cameras )
For road traffic safety purposes it can be helpful to classify roads into three usages: built-up urban streets with slower speeds, dense and diverse road users; non built-up rural roads with higher speeds; and major highways (motorways/ Interstates/ freeways/ Autobahns, etc.) reserved for motor-vehicles and designed to minimize and attenuate crashes. Most casualties occur on urban streets but most fatalities on rural roads, while motorways are the safest in relation to distance traveled. For example, in 2013, German autobahns carried 31% of motorized road traffic (in travel-kilometres) while accounting for 13% of Germany's traffic deaths. The autobahn fatality rate of 1.9 deaths per billion-travel-kilometres compared favorably with the 4.7 rate on urban streets and 6.6 rate on rural roads.


* per 1,000,000,000 travel-kilometres


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「road traffic safety」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.